- Advertisement -

- Advertisement -

OHIO WEATHER

Computational challenges for multimodal astrophysics


  • Abbott, B. P. et al. (LIGO Scientific Collaboration and Virgo Collaboration) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

  • Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12 (2017).

    Article 

    Google Scholar
     

  • Mészáros, P., Fox, D. B., Hanna, C. & Murase, K. Multi-messenger astrophysics. Nat. Rev. Phys. 1, 585–599 (2019).

    Article 

    Google Scholar
     

  • LIGO Scientific Collaboration et al. Advanced LIGO. Class. Quantum Grav. 32, 074001 (2015).

  • Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Grav. 32, 024001 (2015).

    Article 

    Google Scholar
     

  • Somiya, K. Detector configuration of KAGRA—the Japanese cryogenic gravitational-wave detector. Class. Quantum Grav. 29, 124007 (2012).

    Article 

    Google Scholar
     

  • Aso, Y. et al. Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D 88, 043007 (2013).

    Article 

    Google Scholar
     

  • Andersson, N. Whispers from the edge of physics. J. Astrophys. Astron. 38, 58 (2017).

    Article 

    Google Scholar
     

  • Evans, M. et al. A horizon study for cosmic explorer: science, observatories, and community. Preprint at https://arxiv.org/abs/2109.09882 (2021).

  • Acharya, B. S. et al. Introducing the CTA concept. Astropart. Phys. 43, 3–18 (2013).

    Article 

    Google Scholar
     

  • Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    Article 

    Google Scholar
     

  • Dewdney, P. E., Hall, P. J., Schilizzi, R. T. & Lazio, T. J. L. W. The Square Kilometre Array. IEEE Proc. 97, 1482 (2009).

    Article 

    Google Scholar
     

  • Adrián-Martínez, S. et al. Letter of intent for KM3NeT 2.0. J. Phys. G 43, 084001 (2016).

    Article 

    Google Scholar
     

  • Fialkov, A. & Loeb, A. A fast radio burst occurs every second throughout the observable Universe. Astrophys. J. Lett. 846, L27 (2017).

    Article 

    Google Scholar
     

  • Abbott, B. P. et al. A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Class. Quantum Grav. 37, 055002 (2020).

    Article 

    Google Scholar
     

  • Maggiore, M. et al. Science case for the Einstein Telescope. J. Cosmol. Astropart. Phys. https://doi.org/10.1088/1475-7516/2020/03/050 (2020).

  • Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017).

    Article 

    Google Scholar
     

  • Mogushi, K., Cavaglià, M. & Siellez, K. Jet geometry and rate estimate of coincident gamma-ray burst and gravitational-wave observations. Astrophys. J. 880, 55 (2019).

    Article 

    Google Scholar
     

  • Pian, E. et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67–70 (2017).

    Article 

    Google Scholar
     

  • Smartt, S. J. et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551, 75–79 (2017).

    Article 

    Google Scholar
     

  • Radice, D., Perego, A., Zappa, F. & Bernuzzi, S. GW170817: joint constraint on the neutron star equation of state from multimessenger observations. Astrophys. J. Lett. 852, L29 (2018).

    Article 

    Google Scholar
     

  • Abbott, B. P. et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017).

    Article 

    Google Scholar
     

  • Abbott, B. P. et al. Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and Advanced Virgo. Phys. Rev. D 101, 084002 (2020).

    Article 

    Google Scholar
     

  • Ronchini, S. et al. Perspectives for multi-messenger astronomy with the next generation of gravitational-wave detectors and high-energy satellites. Preprint at https://arxiv.org/abs/2204.01746 (2022).

  • Stratta, G. et al. THESEUS: a key space mission concept for multi-messenger astrophysics. Adv. Space Res. 62, 662–682 (2018).

    Article 

    Google Scholar
     

  • Gehrels, N. The Swift γ-ray burst mission. New Astron. Rev. https://doi.org/10.1016/j.newar.2003.12.055 (2004).

  • Bonaldi, A. et al. Square Kilometre Array science data challenge 1: analysis and results. Mon. Not. R. Astron. Soc. 500, 3821–3837 (2020).

    Article 

    Google Scholar
     

  • Ayala Solares, H. A. et al. The Astrophysical Multimessenger Observatory Network (AMON): performance and science program. Astropart. Phys. 114, 68 (2020).

    Article 

    Google Scholar
     

  • Nordin, J. et al. Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves. Astron. Astrophys. 631, A147 (2019).

    MathSciNet 
    Article 

    Google Scholar
     

  • Agayeva, S. et al. Grandma: a network to coordinate them all. In Revista Mexicana de Astronomia y Astrofisica Conference Series 198–205 (Universidad Nacional Autonoma de Mexico, 2021).

  • van der Walt, S., Crellin-Quick, A. & Bloom, J. SkyPortal: an astronomical data platform. J. Open Source Softw. 4, 1247 (2019).

    Article 

    Google Scholar
     

  • Vianello, G. et al. The Multi-Mission Maximum Likelihood framework (3ML). In 34th International Cosmic Ray Conference, PoS(ICRC2015) 1042 (PoS, 2015).

  • The IceCube Collaboration et al. Analysis framework for Multi-messenger Astronomy with IceCube. In 37th International Cosmic Ray Conference, PoS(ICRC2021) 1098 (PoS, 2021).

  • Ritz, S. Overview of the GLAST mission and opportunities. Am. Inst. Phys. Conf. Ser. 921, 3–7 (2007).


    Google Scholar
     

  • Holder, J. The first VERITAS telescope. Astropart. Phys. 25, 391–401 (2006).

    Article 

    Google Scholar
     

  • Sinnis, G. The HAWC TeV gamma-ray observatory. Nuovo Cimento C https://doi.org/10.1393/ncc/i2011-10851-8 (2011).

  • Chatterjee, D., Narayan, G., Aleo, P. D., Malanchev, K. & Muthukrishna, D. El-CID: a filter for gravitational-wave electromagnetic counterpart identification. Mon. Not. R. Astron. Soc. 509, 914–930 (2021).

    Article 

    Google Scholar
     

  • Coughlin, M. W., Dietrich, T., Margalit, B. & Metzger, B. D. Multimessenger Bayesian parameter inference of a binary neutron star merger. Mon. Not. R. Astron. Soc. 489, L91–L96 (2019).

    Article 

    Google Scholar
     

  • Breschi, M. et al. AT2017gfo: Bayesian inference and model selection of multicomponent kilonovae and constraints on the neutron star equation of state. Mon. Not. R. Astron. Soc. 505, 1661–1677 (2021).

    Article 

    Google Scholar
     

  • Radice, D. & Dai, L. Multimessenger parameter estimation of GW170817. Eur. Phys. J. A 55, 50 (2019).

    Article 

    Google Scholar
     

  • Dietrich, T. et al. Multimessenger constraints on the neutron-star equation of state and the Hubble constant. Science 370, 1450–1453 (2020).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Raaijmakers, G. et al. The challenges ahead for multimessenger analyses of gravitational waves and kilonova: a case study on GW190425. Astrophys. J. 922, 269 (2021).

    Article 

    Google Scholar
     

  • Nakamura, K. et al. Multimessenger signals of long-term core-collapse supernova simulations: synergetic observation strategies. Mon. Not. R. Astron. Soc. 461, 3296–3313 (2016).

    Article 

    Google Scholar
     

  • D’Avanzo, P. Short gamma-ray bursts: a review. J. High Energy Astrophys. 7, 73–80 (2015).

    Article 

    Google Scholar
     

  • Metzger, B. D. Kilonovae. Living Rev. Relativ. 23, 1 (2019).

    Article 

    Google Scholar
     

  • Allen, M. G. et al. Escape—addressing open science challenges. Preprint at https://arxiv.org/abs/2012.11534 (2020).

  • Brazier, A. SCIMMA: collaboration and information transfer cyberinfrastructure for multi-messenger astrophysics. In American Astronomical Society Meeting Abstracts 146 (BAAS, 2021).

  • Huerta, E. A. et al. Accelerated,…



  • Read More: Computational challenges for multimodal astrophysics

    This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

    Privacy & Cookies Policy

    Get more stuff like this
    in your inbox

    Subscribe to our mailing list and get interesting stuff and updates to your email inbox.

    Thank you for subscribing.

    Something went wrong.